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Linear Transformation
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❑ Matrix is a linear transformation: map one vector to another vector

𝐴 𝜖 ℝ𝑚×𝑛, 𝑥 𝜖 ℝ𝑛, 𝑦 𝜖 ℝ𝑚: 𝑦𝑚×1 = 𝐴𝑚×𝑛𝑥𝑛×1

𝐴 ∶ ℝ𝑛 → ℝ𝑚

❑ Input-output

𝐴
𝑥 𝑦
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Linear Transformation
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Linear Mapping

Notes

❑ 𝑇(0) = 0

❑ Transformation preserves linear combinations

𝑇 𝛼1𝑥1 +⋯+ 𝛼𝑛𝑥𝑛 = 𝛼1 T x1 +⋯+ 𝛼𝑛 T xn

Definition

Let 𝑉 and 𝑊 be vector spaces over the field 𝔽. A linear transformation (or a linear map) 
from 𝑉 into 𝑊 is a function 𝐓: 𝑉 → 𝑊 that satisfies following properties for all 𝑥, 𝑦 in 𝑉
and all scalars a in 𝔽:

𝑇 𝑥 + 𝑦 = 𝑇 𝑥 + 𝑇 𝑦
𝑇(𝛼𝑥) = 𝛼𝑇(𝑥)
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Linear Mapping

Notes

❑ The set of linear maps from V to W is denoted by ℒ(V,W).
❑ The set of linear maps from 𝑉 to 𝑉 is denoted by ℒ V .

In other words, ℒ V = ℒ V, 𝑉
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Linear Mapping

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Proof

Theorem

Let 𝑣1, . . . , 𝑣𝑛 be a ordered basis of finite-dimensional vector space 𝑉

over the field 𝔽 and 𝑤1, . . . , 𝑤𝑛 an arbitrary list of any vectors in W. If we 

define following linear map, it is unique. 

𝑇 ∶ 𝑉 → 𝑊 such that 𝑇 𝑣𝑖 = 𝑤𝑖 .
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Linear Mapping
Example
Which are linear mapping?

❑ zero map 0 ∶ 𝑉 → 𝑊

❑ identity map 𝐼 ∶ 𝑉 → 𝑉

❑ Let 𝑇 ∶ 𝒫 𝔽 → 𝒫(𝔽) be the differentiation map defined as 𝑇𝒫(𝑧) = ሖ𝒫(𝑧)

❑ Let 𝑇 ∶ ℝ2 → ℝ2 be the map given by 𝑇 𝑥, 𝑦 = 𝑥 − 2𝑦, 3𝑥 + 𝑦

❑ 𝑇 𝑥 = 𝑒𝑥

❑ 𝑇 ∶ 𝔽 → 𝔽 given by 𝑇 𝑥 = 𝑥 − 1
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Algebraic Operations on L(V,W)

Proof

Theorem

With the addition and scalar multiplication as defined above, 𝐿(𝑉,𝑊) is a 
vector space.

Definition

Let 𝑆 and 𝑇 ∈ 𝐿(𝑉,𝑊) and 𝜆 ∈ 𝔽. The sum 𝑆 + 𝑇 and the product 𝜆𝑇 are the linear 
maps from 𝑉 to 𝑊 defined by:

𝑆 + 𝑇 𝑣 = 𝑆𝑣 + 𝑇𝑣 and 𝜆𝑇 𝑣 = 𝜆 𝑇𝑣
For all 𝑣 ∈ 𝑉.
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Review: Vector Space Properties
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❑ Addition of vector space (𝑥 + 𝑦)

❑ Commutative 𝑥 + 𝑦 = 𝑦 + 𝑥 ∀𝑥, 𝑦 ∈ 𝑉

❑ Associative (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) ∀𝑥, 𝑦, 𝑧 ∈ 𝑉

❑ Additive identity ∃𝟎 ∈ 𝑉 such that 𝑥 + 𝟎 = 𝑥, ∀𝑥 ∈ 𝑉

❑ Additive inverse ∃(−𝑥) ∈ 𝑉 such that 𝑥 + (−𝑥) = 0, ∀𝑥 ∈ 𝑉
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Review: Vector Space Properties
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❑ Action of the scalars field on the vector space  (𝛼𝑥)

❑ Associative      𝛼 𝛽𝑥 = 𝛼𝛽 𝑥 ∀𝛼, 𝛽 ∈ 𝐹; ∀𝑥 ∈ 𝑉

❑ Distributive over    ……

scalar addition:     𝛼 + 𝛽 𝑥 = 𝛼𝑥 + 𝛽𝑥 ∀𝛼, 𝛽 ∈ 𝐹; ∀𝑥 ∈ 𝑉

vector addition:    𝛼(𝑥 + 𝑦) = 𝛼𝑥 + 𝛼𝑦 ∀𝛼 ∈ 𝐹; ∀𝑥, 𝑦 ∈ 𝑉

❑ Scalar identity 1𝑥 = 𝑥 ∀𝑥 ∈ 𝑉
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Linear Mapping

Notes

Definition

Let 𝑇 ∈ 𝐿(𝑈, 𝑉) and S ∈ 𝐿 𝑉,𝑊 , then the product S𝑇 ∈ 𝐿(𝑈,𝑊) is defined by:

𝑆𝑇 𝑢 = 𝑆(𝑇𝑢)
For all u ∈ 𝑈.

Note that ST is defined only when T maps into the domain of S. You should verify that 
ST is indeed a linear map from U to W whenever T  𝓛(U, V) and S  𝓛(V, W).
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Linear Mapping

Notes

Multiplication of linear maps is not commutative.

Example

𝐷 ∈ 𝐿 𝑃 𝑅 𝑎𝑠 𝐷 𝑃 𝑥 = 𝑃′ 𝑥

𝑇 ∈ 𝐿 𝑃 𝑅 𝑎𝑠 𝑇 𝑃 𝑥 = 𝑥2𝑃 𝑥

𝑇𝐷 ≠ 𝐷𝑇
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Rotation with  degree
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❑ 𝑅 =
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

𝜃

𝑅𝑥

𝑥

Why?
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Projection
Example

If 𝐴 =
1 0 0
0 1 0
0 0 0

, then the transformation 𝐱 ↦ 𝐴𝐱

projects points in ℝ3 onto the 𝑥1𝑥2-plane because

𝑥1
𝑥2
𝑥3

↦
1 0 0
0 1 0
0 0 0

𝑥1
𝑥2
𝑥3

=
𝑥1
𝑥2
0
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Projection
Transformation      Image of the Unit Square Standard Matrix      

Projection onto 
the 𝑥1-axis     

Projection onto 
the 𝑥2-axis     

1 0
0 0

0 0
0 1
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Projection
Definition

Suppose that 𝑉 is a vector space and 𝑃 ∶ 𝑉 → 𝑉 is a linear transformation. 

If 𝑉 is an inner product space and 𝑃2 = 𝑃 = 𝑃𝑛 then 𝑃 is called an projection.

We furthermore say that 𝑃 projects onto range(𝑃).

❑Projection of vector v on:

❑Two orthogonal vectors

❑Two non-orthogonal vectors

Why?
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Projection on 𝜽 Line
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𝑃 = cos2 𝜃 cos 𝜃 sin 𝜃
cos 𝜃 sin 𝜃 sin2 𝜃

𝑃2 = 𝑃

Why?



22

Reflection in 𝜽 Line
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𝜃

𝑅𝑥

𝑥

❑ 𝑅 =
cos(2𝜃) sin(2𝜃)
sin(2𝜃) −cos(2𝜃)

𝑅2 = 𝐼
Why?
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Reflection in 𝜽 Line
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Transformation      Image of the Unit Square Standard Matrix      

Reflection through 
the 𝑥1-axis     

1 0
0 −1

−1 0
0 1

Reflection through 
the 𝑥2-axis     

Reflection through 
the line 𝑥2 = 𝑥1

0 1
1 0
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Reflection in 𝜽 Line
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Reflection through 
the line 𝑥2 = −𝑥1

Reflection through 
the origin

−1 0
0 −1

0 −1
−1 0



Applications
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Uniform Scaling
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❑ 𝑆 = 𝑠𝐼 =
𝑠 0
0 𝑠

𝑆𝑥
𝑥
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Non-uniform Scaling
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❑ 𝑆 =
𝑠𝑥 0
0 𝑠𝑦

𝑆𝑥

𝑥
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Shearing
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Example

Let 𝐴 =
1 3
0 1

. The transformation 𝑇:ℝ2 → ℝ2

A typical shear matrix is of the form

𝑆 =

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0

𝜆
0
0
1
0

0
0
0
0
1

.
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Shearing
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A shear parallel to the 𝑥 axis results in ƴ𝑥 = 𝑥 + 𝜆𝑦 and ƴ𝑦 = 𝑦.

In matrix form:

ƴ𝑥
ƴ𝑦

=
1 𝜆
0 1

𝑥
𝑦 .

Similarly, a shear parallel to the 𝑦 axis has ƴ𝑥 = 𝑥 and ƴ𝑦 = 𝑦 + 𝜆𝑥.

In matrix form:

ƴ𝑥
ƴ𝑦

=
1 0
𝜆 1

𝑥
𝑦 .

(1,3)

(1,2)

(1,1) (2,1) (3,1)
(0,1)

x_axis y_axis

1 2
0 1

1 0
2 1

(0,1) → (2,1)

(0,0) → (0,0)

(1,1) → (3,1)

(1,0) → (1,0)

(0,1)

(0,0)

(1,3)

(1,2)



30

Shearing

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Note

Example
−1
0
0
0

1
−1
0
0

0
1
−1
0

0
0
1
−1

0
0
0
1

0
−1
3
2
5

= 

−1 − 0
3 − (−1)
2 − 3
5 − 2

=

−1
4
−1
3

𝐷 𝑛−1 ×𝑛 =

−1
0
⋮
0
0

1
−1

0
0

0
1
⋱
…
…

0
0
⋱
−1
0

…
…

1
−1

0
0
⋮
0
1

D : ℝ𝑛 → ℝ𝑛 −1 ⇒ 𝐷

𝑥1
𝑥2
⋮
𝑥𝑛

=

𝑥2 − 𝑥1
𝑥3 − 𝑥2

⋮
𝑥𝑛 − 𝑥𝑛 −1
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Selectors

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

❑ an m× n selector matrix: each row is a unit vector (transposed)

𝐴 =

𝑒𝑘1
𝑇

⋮
𝑒𝑘𝑚
𝑇

multiplying by 𝐴 selects entries of 𝑥:
𝐴𝑥 = (𝑥𝑘1 , 𝑥𝑘2 , . . . , 𝑥𝑘𝑚)

❑ 𝐴 ∶ ℝ𝑛 → ℝ𝑚 ⇒ 𝐴

𝑥1
𝑥2
⋮
𝑥𝑛

=

𝑥𝑘1
𝑥𝑘2
⋮

𝑥𝑘𝑚
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0
0

1
0

0
0

0
1

−1
2
0
−3

=
2
−3

❑Selecting first and last elements of vector:

❑Reversing the elements of vector:

Selectors

Example
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Slicing
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Example

❑ Keeping m elements from r to s (m=s-r+1)

0𝑚× 𝑟 −1 𝐼𝑚×𝑚 0𝑚× 𝑛 −𝑠

❑ Slicing two first and one last elements:

−1
2
0
−3
5

=
0
−3



34

Down Sampling
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Example

K = 2? 𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
⋮

=

𝑥1
𝑥3
𝑥5
⋮

❑ Down sampling with k: selecting one sample in every k samples
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Applications
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❑ Rotation matrix

𝑅 =
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

⇒ 𝑅𝑛 =
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

𝑛

=
cos(𝑛𝜃) − sin(𝑛𝜃)
sin(𝑛𝜃) cos(𝑛𝜃)

❑ Adjacency matrix                                   

𝐴 =

0
1
1
0
0
0

0
0
1
1
0
0

1
0
0
0
1
0

0
0
0
0
0
1

0
0
0
0
0
1

0
1
0
0
0
0

𝑛1 𝑛2 𝑛3 𝑛4 𝑛5 𝑛6

(i) sin 2A = 2 sinA cos A
(ii) cos 2A = cos2 A − sin2 A

𝐴2 =

1
0
1
1
1
0

1
0
0
0
1
1

0
1
1
0
0
1

0
1
0
0
0
0

0
1
0
0
0
0

0
0
1
1
0
0

𝐴3 =

1
1
1
0
1
2

0
2
1
0
0
1

1
1
1
1
1
0

0
0
1
1
0
0

0
0
1
1
0
0

1
0
0
0
1
1



Non-Linear Map
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Norms

Is norm a linear map?
● First, the triangle inequality defines: ∥ x + y ∥≤∥ x ∥+∥ y ∥ . Whereas the first

requirement for linear mappings demands: T(x + y) = T(x) + T(y). The problem

here is in the ≤ condition, which means adding two vectors and then taking the norm

can be less than the sum of the norms of the individual vectors. Such condition is, by

definition, not allowed for linear mappings.

● Second, the positive definite defines: ∥x∥≥0 and ∥x∥=0⟺x=0. Put simply, norms have to

be a positive value. For instance, the norm of ∥−x∥=∥x∥, instead of ∥−x∥. But, the

second property for linear mappings requires ∥−αx∥=−α∥x∥. Hence, it fails when we

multiply by a negative number (i.e., it can preserve the negative sign).
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Translations
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● Translation is a geometric transformation that moves every vector in a vector 

space by the same distance in a given direction. Translation is an operation 

that matches our everyday life intuitions: move a cup of coffee from your left 

to your right, and you would have performed translation in R3 space.

● 𝑇: 𝑅2 → 𝑅3

Is translation a linear map?
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Affine Mappings
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● linear mapping + translation



Null Spaces and 
Ranges
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Null Space
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Definition
Let 𝑇: 𝑉 → 𝑊 be a linear map. Then the null space or kernel of 𝑻 is the 
set of all vectors in 𝑉 that map to zero:

𝑁 𝑇 = 𝑁𝑢𝑙𝑙 𝑇 = 𝑣 ∈ 𝑉 𝑇𝑣 = 0}

❑𝑁𝑢𝑙𝑙𝑖𝑡𝑦(𝑇) ∶= 𝐷𝑖𝑚(𝑁𝑢𝑙𝑙(𝑇))
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Null Space
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Theorem

Suppose 𝑇 ∈ 𝐿 𝑉,𝑊 . Then null 𝑇 is a subspace of 𝑉.

Proof

Theorem

Suppose 𝑇 ∈ 𝐿 𝑉,𝑊 . Then null 𝑇 is vector space.
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Null Space
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Example

Find Null Space T?

❑ zero map 0 ∶ 𝑉 → 𝑊

❑ Let 𝑇 ∶ 𝒫 𝔽 → 𝒫(𝔽) be the differentiation map defined as 𝑇𝒫(𝑧) = ሖ𝒫(𝑧)

❑ Let 𝑇 ∶ 𝐶3 → 𝐶 be the map given by 𝑇 𝑥, 𝑦, 𝑧 = 𝑥 + 2𝑦 + 3𝑧

❑ 𝑇 𝑃(𝑥) = 𝑥2𝑃(𝑥)

❑ 𝑇 ∈ 𝐿 𝔽∞ given by 𝑇 𝑥1, 𝑥2, … → 𝑥2, 𝑥3, …

❑ When is Nullity(T) = 0 ?
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Range
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Definition

Let 𝑇: 𝑉 → 𝑊 be a linear map. Then the range of 𝑻 is the subset of 𝑊 consisting of 
those vectors that are equal to 𝑇𝑣 for some 𝑣 ∈ 𝑉:

r𝑎𝑛𝑔𝑒 𝑇 = 𝑇(𝑣) 𝑣 ∈ 𝑉}
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Range
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Theorem

Suppose 𝑇 ∈ 𝐿 𝑉,𝑊 . Then range 𝑇 is a subspace of 𝑊.

Proof

Theorem

Suppose 𝑇 ∈ 𝐿 𝑉,𝑊 . Then range 𝑇 is vector space.



48

Range
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Example

Find Range T?

❑ zero map 0 ∶ 𝑉 → 𝑊

❑ Let 𝑇 ∶ 𝒫 𝔽 → 𝒫(𝔽) be the differentiation map defined as 𝑇𝒫(𝑧) = ሖ𝒫(𝑧)



One-to-one 
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One-to-One Mapping
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❑ A mapping T : ℝ𝑛 → ℝ𝑚 is said to be one-to-one (injective) ℝ𝑚 if each b
in ℝ𝑚 is the image of at most one x in ℝ𝑛
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Injective and homogeneous linear 
equation

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Theorem

Let 𝑇:ℝ𝑛 → ℝ𝑚 be a linear transformation. Then T is one-to-one if and only if 
the equation T(x) = 0 has only the trivial solution.  

Proof
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One-to-One and Null Space
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Theorem

Let 𝑇: 𝑉 → 𝑊 be a linear transformation. Then T is one-to-one if and only if 
the equation Null(T)={0} (Nullity(T)=0!).

Proof
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One-to-One and Null Space
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Example

Let T be the linear transformation whose standard matrix is 

A = 
1 −4 8 1
0 2 −1 3
0 0 0 5

Does T map ℝ4 onto ℝ3 ? Is T a one-to-one mapping?
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One-to-One Linear Transformation

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Important

Let ℝ𝑛 → ℝ𝑚 be a linear transformation, and let A be the standard matrix for 
T. Then:
a. T maps ℝ𝑛 onto ℝ𝑚 if and only if the columns of A span ℝ𝑚.
b. T is one-to-one if and only if the columns of A are linearly independence.

Example

Let  T(𝑥1, 𝑥2) = (3𝑥1 + 𝑥2, 5𝑥1 + 7𝑥2, 𝑥1 + 3𝑥2). Show that T is a one-to-one 
linear transformation. Does T map ℝ2 onto ℝ3 ?  
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One-to-One Transformations
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Definition

One-to-one transformations: A transformation 𝑇:ℝ𝑛 → ℝ𝑚 is one-to-one if, for every vector b in ℝ𝑚, 
the equation T(x) = b has at most one solution x in ℝ𝑛.

Remark
Here are some equivalent ways of saying that T is one-to-one:
• For every vector b in ℝ𝑚, the equation T(x) = b has zero or one solution x in ℝ𝑛.
• Different inputs of T have different outputs.
• If T(u) = T(v) then u = v.
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One-to-One Transformations
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Remark

Here are some equivalent ways of saying that T is not one-to-one:
• There exist some vector b in ℝ𝑚 such that the equation T(x) = b has more than one solution x in ℝ𝑛.
• There are two different inputs of T with the same output.
• There exist vectors u, v such that 𝑢 ≠ 𝑣 but T(u) = T(v).
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One-to-One Transformations
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Theorem
Let A be an m × n matrix and let T(x) = Ax be the associated matrix transformation. The 
following statements are equivalent:
1. T is one-to-one.
2. For every b in ℝ𝑚, the equation T(x) = b has at most one solution.
3. For every b in ℝ𝑚, the equation T(x) = b has a unique solution or is inconsistent.
4. Ax = 0 has only the trivial solution.
5. The columns of A are linearly independent.
6. A has a pivot in every column.
7. The range of T has dimension n.
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One-to-One Transformations
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If 𝑇:ℝ𝑛 → ℝ𝑚 is an one-to-one matrix transformation, what can we say about the relative sizes of n and 
m?

The matrix associated to T has n columns and m rows. Each row and each column can only contain one 
pivot, so in order for A to have a pivot in every column, it must have at least as many rows as columns: 

𝑛 ≤ 𝑚.

This says that for instance, ℝ3 is too big to admit a one-to-one linear transformation into ℝ2.

Note that there exist tall matrices that are not one-to-one, for example,
1 0 0
0 1 0
0 0 0
0 0 0

Does not have a pivot in every column.

Important

Wide matrices do not have one-to-one transformations.
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Onto Mapping
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❑ A mapping T : ℝ𝑛 → ℝ𝑚 is said to be onto (surjective) ℝ𝑚 if each b in ℝ𝑚

is the image of at least one x in 𝑅𝑛
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Onto (surjective) Transformation
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Definition

A transformation 𝑇 ∶ 𝑉 → 𝑊 is onto if, for every vector b in 𝑊, the 
equation T(x) = b has at least one solution x in 𝑉. It range equals 𝑊. 

Note 

Here are some equivalent ways of saying that T is onto:
• The range of T is equal to the codomain of T.
• Every vector in the codomain is the output of some input vector.
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Onto (surjective) Transformation
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Example

Which one is surjective?

❑ 𝐷 ∈ 𝐿 𝑃5 𝑅 defined by 𝐷𝑃 = 𝑃′

❑ 𝑆 ∈ 𝐿 𝑃5 𝑅 , 𝑃4(𝑅) defined by S𝑃 = 𝑃′
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Onto (surjective) Transformation
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Note

Here are some equivalent ways of saying that T is not onto:
• The range of T is smaller to the codomain of T.
• There exists a vector b in ℝ𝑚 such that the equation T(x) = b does not have a solution
• There is a vector in the codomain that is not the output of any input vector.  
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Onto (surjective) Transformation
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Theorem

Let A be an 𝑚 × 𝑛 matrix and let T(x) = Ax be the associated matrix transformation. The 
following statement are equivalent:
• T in onto.
• T(x) = b has at least one solution for every b in ℝ𝑚.
• Ax = b is consistent for every b in ℝ𝑚.
• The columns of A span ℝ𝑚.
• A has a pivot in every row.
• The range of T has dimension m.
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Onto (surjective) Transformation
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If 𝑇:ℝ𝑛 → ℝ𝑚 is an onto matrix transformation, what can we say about the relative sizes of n and m?

The matrix associated to T has n columns and m rows. Each row and each column can only contain one pivot, 

so in order for A to have a pivot in every row, it must have at least as many columns as rows: 𝑚 ≤ 𝑛.

This says that for instance, ℝ2 is too small to admit an onto linear transformation to ℝ3.

Note that there exist wide matrices that are not onto, for example,

1 −1 2
−2 2 −4

Does not have a pivot in every row.

Important

Tall matrices do not have onto transformations.
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Solution
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The reduction row echelon form of A is :

1 −1 2
0 0 0

There is not a pivot in every row, so T is not onto. The range of T is the column space of A which is 

equal to 

𝑠𝑝𝑎𝑛
1
−2

,
−1
2

,
2
−4

= 𝑠𝑝𝑎𝑛
1
−2

since all three columns of A are collinear. Therefore, any vector not on the line through 
1
−2

is not 

in the range of T. for instance, if b = 
1
1

then T(x) = b has no solution.
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Comparison
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A is an m × n matrix, and T: ℝ𝑛 → ℝ𝑚 is the matrix transformation T(x) = Ax.
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One-to-One and Onto
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Important

One-to-one is the same as onto for square matrices. We observed that a square has a 
pivot in every row if and only if it has a pivot in every column. Therefore, a matrix 
transformation T from ℝ𝑛 to itself is one-to-one if and only if it is onto : in this case, 
the two notations are equivalent.

Conversely, by this note, if a matrix transformation T: ℝ𝑚 → ℝ𝑛 is both one-to-one and 
onto, then 
m = n.  

Note that in general, a transformation T is both one-to-one and onto if and only if T(x) = 
b has exactly one solution for all b in ℝ𝑚.
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Bijective
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Note

• One-to-one and onto.

• If and only if every possible image is mapped to by exactly one argument.
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Conclusion
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Machine learning application
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● The central problem in machine learning and deep learning is to meaningfully 

transform data; in other words, to learn useful representations of the input 

data at hand – representations that get us to the expected output.



Fundamental 
Theorem of Linear 
Maps

07



74

dim 𝑉 = dim null 𝑇 + dim range
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Theorem

Let 𝑉 be a finite-dimensional vector space and 𝑇 ∈ 𝐿 𝑉,𝑊 . Then rang 𝑇 is 
finite-dimensional and 

Dim(𝑉) = 𝑁𝑢𝑙𝑙𝑖𝑡𝑦(𝑇) + 𝐷𝑖𝑚(𝑟𝑎𝑛𝑔𝑒 𝑇 )

Proof
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dim 𝑉 = dim null 𝑇 + dim range
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Corollary

Linear map to a lower-dimensional space is not injective.

Proof

Corollary

Linear map to a higher-dimensional space is not surjective

Proof
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dim 𝑉 = dim null 𝑇 + dim range
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Example

Is T injective or not?

𝑇: 𝔽4 → 𝔽3

𝑇 𝑥1, 𝑥2, 𝑥3, 𝑥4 = ( 7𝑥1 + 𝜋𝑥2 + 𝑥4, 97𝑥1 + 3𝑥2 + 2𝑥3, 𝑥2 + 6𝑥3 + 7𝑥4)
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Invertible, Inverse
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Definition

A linear map 𝑇 ∈ L(𝑉, 𝑊) is called invertible if there exists a linear map

𝑆 ∈ L(𝑊, 𝑉) such that 𝑆𝑇 equals the identity operator on 𝑉 and 𝑇𝑆 equals

the identity operator on 𝑊.

A linear map 𝑆 ∈ L(𝑊, 𝑉) satisfying 𝑆𝑇 = 𝐼 and 𝑇𝑆 = 𝐼 is called an

inverse of 𝑇 (note that the first 𝐼 is the identity operator on 𝑉 and the second 𝐼 is 

the identity operator on 𝑊).
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Inverse is unique
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Theorem

An invertible linear map has a unique inverse.

Definition

If 𝑇 is invertible, then its inverse is denoted by 𝑇−1. In other words, if
𝑇 ∈ ℒ(𝑉, 𝑊) is invertible, then 𝑇−1 is the unique element of ℒ(𝑊, 𝑉) such
that 𝑇−1𝑇 = 𝐼 and 𝑇𝑇−1 = 𝐼.

Example

Find the inverse of 𝑇(𝑥, 𝑦, 𝑧) = (−𝑦, 𝑥, 4𝑧)
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Invertibility

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Theorem

A linear map is invertible if and only if it is injective and surjective.

Theorem
Suppose that 𝑉 and 𝑊 are finite-dimensional vector spaces, dim 𝑉 = dim 𝑊,

and 𝑇 ∈ ℒ(𝑉, 𝑊). Then

𝑇 is invertible ⟺ 𝑇 is injective ⟺ 𝑇 is surjective.
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Whether Vector Spaces Are Isomorphic
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Definition

• An isomorphism is an invertible linear map.
• Two vector spaces are called isomorphic if there is an isomorphism 

from one vector space onto the other one.
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Isomorphisms
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Definition 
Suppose V and W are vector spaces over the same field. We say that V and W are 
isomorphic, denoted by 𝑉 ≅ 𝑊, if there exists an invertible linear transformation

T: 𝑉 → 𝑊(called an isomorphism from V to W).

If T: 𝑉 → 𝑊 is an isomorphism then so is 𝑇−1:𝑊 → 𝑉.

If T: 𝑉 → 𝑊 and S:𝑊 → 𝑋 are isomorphism then so is S ○ 𝑇: 𝑉 → 𝑋.

in particular, if 𝑉 ≅ 𝑊 and W ≅ 𝑋 then 𝑉 ≅ 𝑋.

Theorem

Two finite-dimensional vector spaces over 𝐅 are isomorphic if and only if they

have the same dimension.
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Isomorphisms
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Example

Show that the vector space V = span(𝑒𝑥, 𝑥𝑒𝑥, 𝑥2𝑒𝑥) and ℝ3 are isomorphic.

The standard way to show that two space are isomorphic is to construct an isomorphism between them. 
To this end, consider the linear transformation T: ℝ3 → 𝑉 defined by

𝑇 𝑎, 𝑏, 𝑐 = 𝑎𝑒𝑥 + 𝑏𝑥𝑒𝑥 + 𝑐𝑥2𝑒𝑥.

It is straightforward to show that this function is linear transformation, so we just need to convince 
ourselves that it is invertible. We can construct the standard matrix 𝑇 𝐵⟵𝐸 , where 𝐸 = 𝑒1, 𝑒2, 𝑒3 is 
the standard basis of ℝ3:

𝑇 𝐵⟵𝐸 = 𝑇 1, 0, 0 𝐵, 𝑇 0, 1, 0 𝐵, 𝑇 0, 0, 1 𝐵

= 𝑒𝑥 𝐵 , 𝑥𝑒
𝑥
𝐵 , 𝑥

2𝑒𝑥 𝐵 =
1 0 0
0 1 0
0 0 1

Since 𝑇 𝐵⟵𝐸 is clearly invertible (the identity matrix is its own inverse), T is invertible too and is thus 
an isomorphism.
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Resources

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

❑ Chapter 1: Advanced Linear and Matrix Algebra, Nathaniel Johnston

❑ Chapter 6: Linear Algebra David Cherney 

❑ Linear Algebra and Optimization for Machine Learning

❑ Introduction to Applied Linear Algebra Vectors, Matrices, and Least 

Squares
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